Affordable Access

Orbital evidences for dark-matter-free Milky Way dwarf spheroidal galaxies

Authors
  • Hammer, Francois
  • Yang, Yanbin
  • Arenou, Frederic
  • Wang, Jianling
  • Li, Hefan
  • Bonifacio, Piercarlo
  • Babusiaux, Carine
Publication Date
Mar 10, 2020
Source
HAL-ENAC
Keywords
Language
English
License
Unknown
External links

Abstract

The nature of Milky Way dwarf spheroidals (MW dSphs) has been questioned, in particular whether they are dominated by dark matter (DM). Here we investigate an alternative scenario, for which tidal shocks are exerted by the MW to DM-free dSphs after a first infall of their gas-rich progenitors, and for which theoretical calculations have been verified by pure N-body simulations. Whether or not the dSphs are on their first infall cannot be resolved on the sole basis of their star formation history. In fact, gas removal may cause complex gravitational instabilities and near-pericenter passages can give rise to tidal disruptive processes. Advanced precision with the Gaia satellite in determining both their past orbital motions and the MW velocity curve is, however, providing crucial results. First, tidal shocks explain why DM-free dSphs are found preferentially near their pericenter, where they are in a destructive process, while their chance to be long-lived satellites is associated with a very low probability P~ 2 10^-7, which is at odds with the current DM-dominated dSph scenario. Second, most dSph binding energies are consistent with a first infall. Third, the MW tidal shocks that predict the observed dSph velocity dispersions are themselves predicted in amplitude by the most accurate MW velocity curve. Fourth, tidal shocks accurately predict the forces or accelerations exerted at half-light radius of dSphs, including the MW and the Magellanic System gravitational attractions. The above is suggestive of dSphs that are DM-free and tidally shocked near their pericenters, which may provoke a significant quake in our understanding of near-field cosmology.

Report this publication

Statistics

Seen <100 times