Affordable Access

Access to the full text

Optimization of intraperitoneal aerosolized drug delivery using computational fluid dynamics (CFD) modeling

  • Rahimi Gorji, Mohammad
  • Debbaut, Charlotte
  • Ghorbaniasl, Ghader
  • Cosyns, Sarah
  • Willaert, Wouter
  • Ceelen, Wim
Publication Date
Jan 01, 2022
DOI: 10.1038/s41598-022-10369-8
Ghent University Institutional Archive
External links


Intraperitoneal (IP) aerosolized anticancer drug delivery was recently introduced in the treatment of patients with peritoneal metastases. However, little is known on the effect of treatment parameters on the spatial distribution of the aerosol droplets in the peritoneal cavity. Here, computational fluid dynamics (CFD) modeling was used in conjunction with experimental validation in order to investigate the effect of droplet size, liquid flow rate and viscosity, and the addition of an electrostatic field on the homogeneity of IP aerosol. We found that spatial distribution is optimal with small droplet sizes (1-5 mu m). Using the current clinically used technology (droplet size of 30 mu m), the optimal spatial distribution of aerosol is obtained with a liquid flow rate of 0.6 mL s(-1). Compared to saline, nebulization of higher viscosity liquids results in less homogeneous aerosol distribution. The addition of electrostatic precipitation significantly improves homogeneity of aerosol distribution, but no further improvement is obtained with voltages higher than 6.5 kV. The results of the current study will allow to choose treatment parameters and settings in order to optimize spatial distribution of IP aerosolized drug, with a potential to enhance its anticancer effect.

Report this publication


Seen <100 times