Affordable Access

deepdyve-link
Publisher Website

O-GlcNAc signaling in cancer metabolism and epigenetics.

Authors
  • Singh, Jay Prakash1
  • Zhang, Kaisi2
  • Wu, Jing3
  • Yang, Xiaoyong4
  • 1 Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA.
  • 2 Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA.
  • 3 Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China. , (China)
  • 4 Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA. Electronic address: [email protected]
Type
Published Article
Journal
Cancer letters
Publication Date
Jan 28, 2015
Volume
356
Issue
2 Pt A
Pages
244–250
Identifiers
DOI: 10.1016/j.canlet.2014.04.014
PMID: 24769077
Source
Medline
Keywords
License
Unknown

Abstract

The covalent attachment of β-D-N-acetylglucosamine monosaccharides (O-GlcNAc) to serine/threonine residues of nuclear and cytoplasmic proteins is a major regulatory mechanism in cell physiology. Aberrant O-GlcNAc modification of signaling proteins, metabolic enzymes, and transcriptional and epigenetic regulators has been implicated in cancer. Relentless growth of cancer cells requires metabolic reprogramming that is intertwined with changes in the epigenetic landscape. This review highlights the emerging role of protein O-GlcNAcylation at the interface of cancer metabolism and epigenetics.

Report this publication

Statistics

Seen <100 times