Affordable Access

Numerical analysis of the effect of weld-induced residual stress and plastic damage on the ballistic performance of welded steel plate

  • Flores-Johnson, EA
  • Muransky, O
  • Hamelin, CJ
  • Bendeich, PJ
  • Edwards, L
Publication Date
Jun 01, 2012
ANSTO Publications Online
External links


The current paper presents numerical analyses that elucidate the effects of post-weld residual stress and associated plastic damage on the ballistic performance of 316L austenitic steel plate. Impact simulations of an 18 mm thick plate with a centreline three-pass slot weld by hemispherical-nosed and flat-nosed projectiles are performed, with initial velocities in the range of 300-800 m/s. The numerical framework consists of three interdependent stages: (i) a weld model was developed in Abaqus/Standard and validated using two independent experimental data sets; (ii) a Johnson-Cook material model is calibrated and validated along with the shear failure fracture criterion available in Abaqus/Explicit for impact models; and (iii) the weld modelling results were transferred to an impact model built in Abaqus/Explicit, which employs the validated material and fracture models to predict the ballistic performance of welded plate. It is shown that the associated plastic strain damage accumulated during the welding process - and its distribution - has an adverse effect on the ballistic performance. It has also been determined that a fracture criterion that accounts for pre-existing damage in the weldment must be used for accurate impact analyses of welded structures. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.

Report this publication


Seen <100 times