Affordable Access

deepdyve-link
Publisher Website

A novel voltammetric approach to the detection of primary bile acids in serum samples.

Authors
  • Klouda, Jan1
  • Nesměrák, Karel2
  • Kočovský, Pavel3
  • Barek, Jiří4
  • Schwarzová-Pecková, Karolina5
  • 1 Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ-128 43 Prague 2, Czech Republic. Electronic address: [email protected] , (Czechia)
  • 2 Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ-128 43 Prague 2, Czech Republic. Electronic address: [email protected] , (Czechia)
  • 3 Charles University, Faculty of Science, Department of Organic Chemistry, Hlavova 8/2030, CZ-128 43 Prague 2, Czech Republic; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 542/2, CZ-166 10 Prague 6, Czech Republic. Electronic address: [email protected] , (Czechia)
  • 4 Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ-128 43 Prague 2, Czech Republic. Electronic address: [email protected] , (Czechia)
  • 5 Charles University, Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Hlavova 8/2030, CZ-128 43 Prague 2, Czech Republic. Electronic address: [email protected] , (Czechia)
Type
Published Article
Journal
Bioelectrochemistry (Amsterdam, Netherlands)
Publication Date
Apr 19, 2020
Volume
134
Pages
107539–107539
Identifiers
DOI: 10.1016/j.bioelechem.2020.107539
PMID: 32361665
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

An innovative voltammetric approach to the detection of cholic and chenodeoxycholic acids is presented. These two primary bile acids are important biomarkers of liver function in humans and are involved in many physiological processes in the human body. Herein we describe a way to reproducibly convert the hard-to-detect bile acid molecule into an easily detectable derivative in situ using 0.1 M HClO4 in acetonitrile (water content 0.55%). Under these conditions the bile acids are dehydrated and the resulting alkenes can be subsequently oxidized electrochemically on polished boron-doped diamond electrode under unchanged conditions at approximately +1.2 V vs. Ag/AgNO3 in acetonitrile. After optimization, differential pulse voltammetry provides competitive limits of detection of 0.5 µM and 1.0 µM for cholic and chenodeoxycholic acid, respectively, with a linear course of calibration dependency to the minimum of 80 µM. The method was applied for detection of cholic and chenodeoxycholic acids in artificial and human serum samples using single solid phase extraction on C-18 cartridge for preliminary separation of the analytes. High recoveries of 80-90% were consistently obtained by the proposed voltammetric method and reference HPLC with fluorescence detection for human serum samples, confirming good selectivity for real-life samples. Copyright © 2020 Elsevier B.V. All rights reserved.

Report this publication

Statistics

Seen <100 times