Affordable Access

Novel PTFE hollow fiber membrane fabricated by emulsion electrospinning and sintering for membrane distillation

  • Su, Chunlei
  • Li, Yuping
  • Cao, Hongbin
  • Lu, Chun
  • Li, Yujiao
  • Chang, Junjun
  • Duan, Feng
Publication Date
Aug 01, 2019
Institutional Repository of Institute of Process Engineering, CAS (IPE-IR)
External links


<p>Polytetrafluoroethylene (PTFE) is an attractive membrane material due to its superior chemical resistance, thermal stability and strong hydrophobicity. However, PTFE hollow fiber membranes are challenging to produce by conventional technique due to the high solvent resistance and high melt viscosity of PTFE. In this study, novel PTFE hollow fiber membranes composed of pure PTFE nanofibers were firstly fabricated via a scalable and environment-friendly method based on emulsion electrospinning with a non-rotating collector and followed by a high-temperature sintering process. The effects of PTFE/PEO mass ratio and sintering temperature on the morphologies and properties of the resulting membranes were investigated. The prepared PTFE hollow fiber membrane shows the excellent characteristics combining the advantages of both electrospun nanofibers membrane and hollow fiber membrane, such as high porosity (more than 82%), self-supporting and superhydrophobicity. The membrane sintered at 380 degrees C present the highest mechanical strength, which shows the tensile strength, Young's modulus, strain at break of 30.5 Mpa, 53 Mpa, and 315%, respectively. The permeate flux of the prepared PTFE hollow fiber membrane is about 4.6-8.8 times as that of the commercial PTFE hollow fiber membranes, as well as is approximately 3.2-11.6 times higher than the date of the reported PTFE hollow fiber membranes. Additionally, the prepared membrane shows high and stable flux in long-term and rising salinity experiments, indicating it is very promising for membrane distillation (MD) application and even for the treatment of hyper-saline wastewater.</p>

Report this publication


Seen <100 times