Affordable Access

Novel method reveals a narrow phylogenetic distribution of bacterial dispersers in environmental communities exposed to low hydration conditions

  • Krüger, U. S.
  • Bak, F.
  • Aamand, J.
  • Nybroe, O.
  • Badawi, N.
  • Smets, Barth F.
  • Dechesne, Arnaud
Publication Date
Jan 01, 2018
Online Research Database In Technology
External links


In this study, we developed a method that provides community-level surface dispersal profiles under controlled hydration conditions from environmental samples and enables us to isolate and uncover the diversity of the fastest bacterial dispersers. The method expands on the Porous Surface Model (PSM), previously used to monitor dispersal of individual bacterial strains in liquid films at the surface of a porous ceramic disc. The novel procedure targets complex communities and captures the dispersed bacteria on a solid medium for growth and detection. The method was first validated by distinguishing motile Pseudomonas putida and Flavobacterium johnsoniae strains from their non-motile mutants. Applying the method to soil and lake water bacterial communities showed that community-scale dispersal declined as conditions became drier. However, for both communities, dispersal was detected even under low hydration conditions (matric potential: -3.1 kPa), previously proven too dry for P. putida KT2440 motility. We were then able to specifically recover and characterize the fastest dispersers from the inoculated communities. For both soil and lake samples, 16S rRNA gene amplicon sequencing revealed that the fastest dispersers were substantially less diverse than the total communities. The dispersing fraction of the soil microbial community was dominated by Pseudomonas which increased in abundance at low hydration conditions, while the dispersing fraction of the lake community was dominated by Aeromonas and, under wet conditions (-0.5 kPa), also by Exiguobacterium The results gained in this study bring us a step closer to assessing the dispersal ability within complex communities under environmentally relevant conditions.IMPORTANCE Dispersal is a key process of bacterial community assembly. Yet, very few attempts have been made at assessing bacterial dispersal at the community level as focus has previously been on pure culture studies. A crucial factor for dispersal in habitats where hydration conditions vary, such as soils, is the thickness of the liquid films surrounding solid surfaces, but little is known on how the ability to disperse in such films varies within bacterial communities. Therefore, we developed a method to profile community dispersal and identify fast dispersers on a rough surface resembling soil surfaces. Our results suggest that within the motile fraction of a bacterial community only a minority of the bacterial types are able to disperse in the thinnest liquid films. During dry periods, these efficient dispersers can gain a significant fitness advantage through their ability to colonize new habitats ahead of the rest of the community.

Report this publication


Seen <100 times