Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Novel functionalized microporous organic networks based on triphenylphosphine.

Authors
Type
Published Article
Journal
Chemistry - A European Journal
1521-3765
Publisher
Wiley Blackwell (John Wiley & Sons)
Publication Date
Volume
19
Issue
30
Pages
10024–10029
Identifiers
DOI: 10.1002/chem.201300334
PMID: 23775838
Source
Medline
Keywords
License
Unknown

Abstract

This article describes the synthesis and functions of phosphine or phosphine oxide functionalized networks (PP-P or PP-PO; PP = porous polymer). These materials were predominantly microporous and exhibited high surface areas (S(BET): 1284 and 1353 m(2)  g(-1) for PP-P and PP-PO, respectively), with high CO2 (2.46 and 3.83 mmol g(-1) for PP-P and PP-PO, respectively) uptake capacities. Pd nanoparticles can be simply incorporated into the functionalized networks (PP-P-Pd or PP-PO-Pd) through a facile one-step impregnation. A yield of 98 % was obtained in the Suzuki reaction between 1-chlorobenzene and p-tolylboronic acid with the PP-P-Pd system, which was higher than that obtained when PP-PO-Pd (53.2 %) or [Pd(PPh3)4] (38.2 %) was used as the catalyst. The superior catalytic ability of PP-P-Pd can be attributed to the structural features that incorporate triarylphosphine within a microporous structure.

Statistics

Seen <100 times