Affordable Access

Publisher Website

NLTE modeling of Stokes vector center-to-limb variations in the CN violet system

Authors
  • Shapiro, A. I.
  • Fluri, D. M.
  • Berdyugina, S. V.
  • Bianda, M.
  • Ramelli, R.
Type
Preprint
Publication Date
Mar 13, 2011
Submission Date
Mar 13, 2011
Identifiers
DOI: 10.1051/0004-6361/200811299
Source
arXiv
License
Yellow
External links

Abstract

The solar surface magnetic field is connected with and even controls most of the solar activity phenomena. Zeeman effect diagnostics allow for measuring only a small fraction of the fractal-like structured magnetic field. The remaining hidden magnetic fields can only be accessed with the Hanle effect. Molecular lines are very convenient for applying the Hanle effect diagnostics thanks to the broad range of magnetic sensitivities in a narrow spectral region. With the UV version of the Zurich Imaging Polarimeter ZIMPOL II installed at the 45 cm telescope of the Istituto Ricerche Solari Locarno (IRSOL), we simultaneously observed intensity and linear polarization center-to-limb variations in two spectral regions containing the (0,0) and (1,1) bandheads of the CN B 2 {\Sigma} - X 2 {\Sigma} system. Here we present an analysis of these observations. We have implemented coherent scattering in molecular lines into a NLTE radiative transfer code. A two-step approach was used. First, we separately solved the statistical equilibrium equations and compute opacities and intensity while neglecting polariza- tion. Then we used these quantities as input for calculating scattering polarization and the Hanle effect. We have found that it is impossible to fit the intensity and polarization simultaneously at different limb angles in the frame- work of standard 1D modeling. The atmosphere models that provide correct intensity center-to-limb variations fail to fit linear polar- ization center-to-limb variations due to lacking radiation field anisotropy. We had to increase the anisotropy by means of a specially introduced free parameter. This allows us to successfully interpret our observations. We discuss possible reasons for underestimating the anisotropy in the 1D modeling.

Report this publication

Statistics

Seen <100 times