Affordable Access

A new approach for studying correlations between the chemical structure and the rheological properties in carboxymethyl cellulose

Authors
  • Enebro, Jonas
  • Momcilovic, Dane
  • Siika-aho, Matti
  • Karlsson, Sigbritt
Publication Date
2007
Source
VTT Publications Register
Keywords
License
Unknown
External links

Abstract

Two model sodium carboxymethyl celluloses (CMC) with similar monomer composition but with significant differences in the viscoelastic properties, that could not be assigned to variations in the average molar mass or molar mass distribution, were investigated with respect to the fraction of nonsubstituted cellulose segments in the polymers. The CMCs were hydrolyzed by a purified highly selective endoglucanase. The average molar mass and molar mass distribution of the enzyme products, as measured by size-exclusion chromatography with online multi-angle light scattering and refractive index detection (SEC/MALS/RI), revealed that the enzyme-catalyzed hydrolysis was more effective on one of the CMCs. To investigate whether this was due to a higher fraction of nonsubstituted cellulose segments in the polymer, the concentrations of nonsubstituted enzyme products, e.g., cellotetraose and cellopentaose, were measured by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). It was concluded that the two CMCs displayed significant differences in the fraction of nonsubstituted cellulose segments. Furthermore, the CMC with the strongest attractive intermolecular interactions, according to rheometry, also contained the highest fraction of nonsubstituted cellulose segments.

Report this publication

Statistics

Seen <100 times