Affordable Access

Neurophysiological basis for neurogenic-mediated articular cartilage anabolism alteration.

Authors
  • Gouze-Decaris, E
  • Philippe, L
  • Minn, A
  • Haouzi, P
  • Gillet, P
  • Netter, P
  • Terlain, B
Type
Published Article
Journal
American journal of physiology. Regulatory, integrative and comparative physiology
Publication Date
Jan 01, 2001
Volume
280
Issue
1
Identifiers
PMID: 11124141
Source
Medline
License
Unknown

Abstract

This study was designed to investigate the pathways involved in neurogenic-mediated articular cartilage damage triggered by a nonsystemic distant subcutaneous or intra-articular inflammation. The cartilage damage was assessed 24 h after subcutaneous or intra-articular complete Freund's adjuvant (CFA) injection measuring patellar proteoglycan (PG) synthesis (ex vivo [Na(2)(35)SO(4)] incorporation) in 96 Wistar rats. Unilateral subcutaneous or intra-articular injection of CFA induced significant decrease (25-29%) in PG synthesis in both patellae. Chronic administration of capsaicin (50 mg. kg(-1). day(-1) during 4 days), which blunted the normal response of C fiber stimulation, prevented the bilateral significant decrease in cartilage synthesis. Similarly, intrathecal injection of MK-801 (10 nmol/day during 5 days), which blocked the glutamatergic synaptic transmission at the dorsal horn of signal originating in primary afferent C fibers, eliminated the CFA-induced PG synthesis decrease in both patellae. Chemical sympathectomy, induced by guanethidine (12.5 mg. kg(-1). day(-1) during 6 wk), also prevented PG synthesis alteration. Finally, compression of the spinal cord at the T3-T5 level had a similar protective effect on the reduction of [Na(2)(35)SO(4)] incorporation. It is concluded that the signal that triggers articular cartilage synthesis damage induced by a distant local inflammation 1) is transmitted through the afferent C fibers, 2) makes glutamatergic synaptic connections with the preganglionic neurons of the sympathetic system, and 3) involves spinal and supraspinal pathways.

Report this publication

Statistics

Seen <100 times