Affordable Access

Neuronove site na grafech zohlednujici casovy aspekt v kyberneticke bezpecnosti / Temporal Aspect Aware Graph Neural Network in Cybersecurity

Authors
  • bushuiev, anton
Publication Date
Jun 12, 2021
Source
Digital Library of the Czech Technical University in Prague
Keywords
License
Unknown

Abstract

Žít v dynamickém světě znamená řešit časově závislé úlohy. Avšak moderní nástroje pro strojové učení na grafech jsou především navržené pro statické sítě. Proto se v této závěrečné práci detailně zabývám problematikou strojového učení respektujícího časový aspekt pro grafové úlohy. Výsledkem tohoto teoretického výzkumu je návrh dynamické grafové neuronové sítě se spojitým časem. Zaměřuji se na problém Cisco Cognitive Intelligence maliciousness classification --- úlohu odhalení internetových domén s bezpečnostním rizikem na základě interakcí mezi uživateli a doménami. Ukazuji, že tento problém lze efektivně vyřešit použitím různých přístupů strojového učení, včetně navrženého. Navíc demonstruji, že obecné zákonitostí bezpečnostního rizika domén nevykazují dynamické vlastnosti v uvažovaných datech z reálného světa. / Living in a dynamic world means dealing with time-dependent tasks. However, the modern toolbox for machine learning on graphs is mainly designed for static networks. Therefore, in this thesis, I deepen into the problematics of temporal-aware machine learning approaches for graph problems. The outcome of this study is a proposal for the new continuous-time dynamic graph neural network. I focus on the Cisco Cognitive Intelligence maliciousness classification problem --- the task of malicious Internet domain exposure based on user-domain interactions. I demonstrate that this problem can be efficiently solved employing different approaches, including the proposed one. Moreover, I show that general maliciousness patterns do not exhibit dynamic properties in the considered real-world data.

Report this publication

Statistics

Seen <100 times