Affordable Access

NAD(P)H-dependent reduction of 12-ketoeicosatetraenoic acid to 12(R)- and 12(S)-hydroxyeicosatetraenoic acid by rat liver microsomes.

Authors
  • Falgueyret, J P
  • Leblanc, Y
  • Rokach, J
  • Riendeau, D
Type
Published Article
Journal
Biochemical and biophysical research communications
Publication Date
Nov 15, 1988
Volume
156
Issue
3
Pages
1083–1089
Identifiers
PMID: 3190686
Source
Medline
License
Unknown

Abstract

The possibility that 12-keto-5,8,10,14 eicosatetraenoic acid (12-KETE) could be used as substrate by reductase(s) to generate 12-hydroxyeicosatetraenoic acid (12-HETE) was investigated using rat liver microsomes as a source of enzyme activity. Microsomes catalyzed the time-dependent reduction of 12-KETE to 12-HETE in a reaction that required NAD(P)H. The maximal specific activity of 12-HETE formation was 1.7 nmol/min/mg of protein in the presence of NADH. The reaction could not be detected in the absence of cofactor or by using heat inactivated microsomes. The identity of the 12-HETE product was established by U.V. spectroscopy and co-elution with 12-HETE in two different systems of RP-HPLC. Resolution of the methyl esters of reaction products by chromatography on chiral columns also indicated that the reduction of 12-KETE with either NADPH or NADH generated a mixture of 12(S)- and 12(R)-HETE in a ratio of about 2:1. The results demonstrate the presence of a 12-KETE reductase activity in rat liver microsomes which can form both the R and S isomers of 12-HETE.

Report this publication

Statistics

Seen <100 times