Affordable Access

Murine prenatal expression of cholecystokinin in neural crest, enteric neurons, and enteroendocrine cells.

Authors
  • Lay, J M
  • Gillespie, P J
  • Samuelson, L C
Type
Published Article
Journal
Developmental dynamics : an official publication of the American Association of Anatomists
Publication Date
Oct 01, 1999
Volume
216
Issue
2
Pages
190–200
Identifiers
PMID: 10536058
Source
Medline
License
Unknown

Abstract

Cholecystokinin (CCK) is a regulatory peptide that is primarily expressed in two adult cell types: endocrine cells of the intestine and neurons of the central nervous system. To determine the ontogeny of CCK expression during intestinal organogenesis, we created a mouse strain in which the CCK gene was replaced by a lacZ reporter cassette using homologous recombination in embryonic stem cells. Initially, CCK expression in the developing intestine was limited to the myenteric plexus of the enteric nervous system. This expression pattern was widespread, extending from the proximal stomach into the colon, yet transient, being detected soon after gut tube closure [embryonic day 10.5 (E10.5)] through E15.5. Since enteric neurons are derived from the neural crest, we examined earlier (E8.5-9.5) embryos and concluded that lacZ was expressed in subpopulations of neural tube and neural crest cells. Endocrine cell expression in the intestinal epithelium occurred later, beginning at E15.5 as enteric neuronal expression was dwindling. This expression persisted to yield the adult pattern of scattered single endocrine cells in the upper small intestine. The data show that CCK is a very early marker of both neuronal and endocrine cell lineages in the developing gastrointestinal tract. Furthermore, reverse transcriptase polymerase chain reaction (RT-PCR) analysis showed that CCK receptor transcripts were detected in embryos as early as E10.5, suggesting that CCK signaling is established early in mouse development. Dev Dyn 1999;216:190-200.

Report this publication

Statistics

Seen <100 times