Affordable Access

Publisher Website

Mural propagation of descending vasa recta responses to mechanical stimulation.

Authors
Type
Published Article
Journal
American journal of physiology. Renal physiology
Publication Date
Volume
305
Issue
3
Identifiers
DOI: 10.1152/ajprenal.00220.2013
PMID: 23698119
Source
Medline
Keywords
  • Calcium
  • Electrophysiology
  • Kidney
  • Medulla
  • Microcirculation
  • Rat

Abstract

To investigate the responses of descending vasa recta (DVR) to deformation of the abluminal surface, we devised an automated method that controls duration and frequency of stimulation by utilizing a stream of buffer from a micropipette. During stimulation at one end of the vessel, fluorescent responses from fluo4 or bis[1,3-dibutylbarbituric acid-(5)] trimethineoxonol [DiBAC₄(3)], indicating cytoplasmic calcium ([Ca²⁺]CYT) or membrane potential, respectively, were recorded from distant cells. Alternately, membrane potential was recorded from DVR pericytes by nystatin whole cell patch-clamp. Mechanical stimulation elicited reversible [Ca²⁺)]CYT responses that increased with frequency. Individual pericyte responses along the vessel were initiated within a fraction of a second of one another. Those responses were inhibited by gap junction blockade with 18 β-glycyrrhetinic acid (100 μM) or phosphoinositide 3 kinase inhibition with 2-morpholin-4-yl-8-phenylchromen-4-one (50 μM). [Ca²⁺]CYT responses were blocked by removal of extracellular Ca²⁺ or L-type voltage-gated channel blockade with nifedipine (10 μM). At concentrations selective for the T-type channel blockade, mibefradil (100 nM) was ineffective. During mechanostimulation, pericytes rapidly depolarized, as documented with either DiBAC4(3) fluorescence or patch-clamp recording. Single stimuli yielded depolarizations of 22.5 ± 2.2 mV while repetitive stimuli at 0.1 Hz depolarized pericytes by 44.2 ± 4.0 mV. We conclude that DVR are mechanosensitive and that rapid transmission of signals along the vessel axis requires participation of gap junctions, L-type Ca²⁺ channels, and pericyte depolarization.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F