Affordable Access

Muon-induced background in the KATRIN main spectrometer

Authors
  • Buzinsky, Nicholas Gregory
  • Formaggio, Joseph A
  • Sibille, Valerian
Publication Date
Dec 01, 2018
Source
[email protected]
License
Green
External links

Abstract

The KArlsruhe TRItium Neutrino (KATRIN) experiment aims to make a model-independent determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c 2 . It investigates the kinematics of β-particles from tritium β-decay close to the endpoint of the energy spectrum. Because the KATRIN main spectrometer (MS) is located above ground, muon-induced backgrounds are of particular concern. Coincidence measurements with the MS and a scintillator-based muon detector system confirmed the model of secondary electron production by cosmic-ray muons inside the MS. Correlation measurements with the same setup showed that about 12% of secondary electrons emitted from the inner surface are induced by cosmic-ray muons, with approximately one secondary electron produced for every 17 muon crossings. However, the magnetic and electrostatic shielding of the MS is able to efficiently suppress these electrons, and we find that muons are responsible for less than 17% (90% confidence level) of the overall MS background. Keywords: Cosmic-ray muon backgrounds; Electrostatic spectrometer; Neutrino mass / United States. Department of Energy (Grant DE-FG02-97ER41020) / United States. Department of Energy (Grant DE-FG02-94ER40818) / United States. Department of Energy (Grant DE-SC0004036) / United States. Department of Energy (Grant DE-FG02-97ER41033) / United States. Department of Energy (Grant DE-FG02-97ER41041) / United States. Department of Energy (Grant DE-AC02-05CH11231) / United States. Department of Energy (Grant DE-SC0011091) / United States. Department of Energy (Grant DE-SC0019304)

Report this publication

Statistics

Seen <100 times