Affordable Access

Multiscale, resurgent epidemics in a hierarchical metapopulation model.

Authors
Type
Published Article
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publication Date
Volume
102
Issue
32
Pages
11157–11162
Identifiers
PMID: 16055564
Source
Medline

Abstract

Although population structure has long been recognized as relevant to the spread of infectious disease, traditional mathematical models have understated the role of nonhomogenous mixing in populations with geographical and social structure. Recently, a wide variety of spatial and network models have been proposed that incorporate various aspects of interaction structure among individuals. However, these more complex models necessarily suffer from limited tractability, rendering general conclusions difficult to draw. In seeking a compromise between parsimony and realism, we introduce a class of metapopulation models in which we assume homogeneous mixing holds within local contexts, and that these contexts are embedded in a nested hierarchy of successively larger domains. We model the movement of individuals between contexts via simple transport parameters and allow diseases to spread stochastically. Our model exhibits some important stylized features of real epidemics, including extreme size variation and temporal heterogeneity, that are difficult to characterize with traditional measures. In particular, our results suggest that when epidemics do occur the basic reproduction number R(0) may bear little relation to their final size. Informed by our model's behavior, we suggest measures for characterizing epidemic thresholds and discuss implications for the control of epidemics.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments