Affordable Access

Multiple prolactin (PRL) receptor cytoplasmic residues and Stat1 mediate PRL signaling to the interferon regulatory factor-1 promoter.

Authors
  • Wang, Y
  • O'Neal, K D
  • Yu-Lee, L
Type
Published Article
Journal
Molecular endocrinology (Baltimore, Md.)
Publication Date
Aug 01, 1997
Volume
11
Issue
9
Pages
1353–1364
Identifiers
PMID: 9259325
Source
Medline
License
Unknown

Abstract

The Nb2 PRL receptor (PRL-R) is known to mediate PRL signaling to the interferon (IFN) regulatory factor-1 (IRF-1) gene via the family of signal transducers and activators of transcription or Stats. To analyze the components of the PRL-R/Stat/IRF-1 signaling pathway, various PRL-R, Stat, and IRF-1-CAT reporter constructs were transiently cotransfected into COS cells. First, mutations in the IFNgamma-activated sequence (GAS), either multimerized or in the context of the 1.7-kb IRF-1 promoter, failed to mediate a PRL response, showing that the IRF-1 GAS is a target of PRL signaling. Next, pairwise alanine substitutions into conserved residues in the proline-rich motif or Box 1 region and two tyrosine mutations, Y308F and Y382F, in the PRL-R intracellular domain all impaired PRL signaling to multimerized GAS or to the 1.7-kb IRF-1 promoter. Furthermore, these PRL-R mutants mediated reduced Stat1 binding to the IRF-1 GAS. Transfection of Stat1 further enhanced PRL signaling to the IRF-1 promoter, suggesting that Stat1 is a positive mediator of PRL action. These studies show that both membrane proximal and distal residues of the PRL-R are involved in signaling to the IRF-1 gene. Further, Stat1 and the GAS element are important for PRL activation of the IRF-1 gene.

Report this publication

Statistics

Seen <100 times