Affordable Access

deepdyve-link
Publisher Website

Multimodal retinal imaging of diabetic macular edema: toward new paradigms of pathophysiology.

Authors
  • Midena, Edoardo1, 2
  • Bini, Silvia3
  • 1 Department of Ophthalmology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy. [email protected]
  • 2 GB Bietti Foundation, IRCCS, Rome, Italy. [email protected]
  • 3 Department of Ophthalmology, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
Type
Published Article
Journal
Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie
Publication Date
September 2016
Volume
254
Issue
9
Pages
1661–1668
Identifiers
DOI: 10.1007/s00417-016-3361-7
PMID: 27154296
Source
Medline
Keywords
License
Unknown

Abstract

The pathophysiology of diabetic macular edema (DME) is multifactorial and partly still unknown. An increasing body of evidence suggests that neurodegeneration and retinal glial cells activation occur even before the earliest clinical manifestation of diabetic retinal vasculopathy. Nowadays, new non-invasive techniques are available to assess and characterize DME, not only in a quantitative perspective, but also making it possible to understand and quantify the pathogenic processes sustaining fluid accumulation. Optical coherence tomography (OCT) allows documenting not only parameters such as macular volume, central and sectorial retinal thickness, fluid localization, and integrity of retinal layers, but also new still poorly investigated reflectivity aspects. Hyperreflective intraretinal spots (HRS) have been detected on OCT scans through the retinal layers, with a presumptive migration pattern towards the external layers during the occurrence of diabetic retinopathy and DME. These HRS have been hypothesised to represent an in-vivo marker of microglial activation. Autofluorescence of the fundus (FAF) also offers a non-invasive imaging technique of DME. The area of increased FAF correlates with the presence of intraretinal fluid and probably retinal glial activation. Microperimetry allows the measurement of retinal sensitivity by testing specific selected retinal areas. Some studies have shown that increased macular FAF in DME correlates better with visual function assessed with microperimetry than with visual acuity, showing that new imaging and functional techniques may help to elucidate DME pathogenesis and to target therapeutical strategies.

Report this publication

Statistics

Seen <100 times