Affordable Access

Access to the full text

MoS2 Nanosheets Sensitized with Quantum Dots for Room-Temperature Gas Sensors

Authors
  • Liu, Jingyao1
  • Hu, Zhixiang1
  • Zhang, Yuzhu1
  • Li, Hua-Yao1
  • Gao, Naibo1
  • Tian, Zhilai1
  • Zhou, Licheng1
  • Zhang, Baohui1
  • Tang, Jiang1
  • Zhang, Jianbing1
  • Yi, Fei1
  • Liu, Huan1
  • 1 Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, People’s Republic of China , Wuhan (China)
Type
Published Article
Journal
Nano-Micro Letters
Publisher
Springer Singapore
Publication Date
Feb 19, 2020
Volume
12
Issue
1
Identifiers
DOI: 10.1007/s40820-020-0394-6
Source
Springer Nature
Keywords
License
Green

Abstract

The Internet of things for environment monitoring requires high performance with low power-consumption gas sensors which could be easily integrated into large-scale sensor network. While semiconductor gas sensors have many advantages such as excellent sensitivity and low cost, their application is limited by their high operating temperature. Two-dimensional (2D) layered materials, typically molybdenum disulfide (MoS2) nanosheets, are emerging as promising gas-sensing materials candidates owing to their abundant edge sites and high in-plane carrier mobility. This work aims to overcome the sluggish and weak response as well as incomplete recovery of MoS2 gas sensors at room temperature by sensitizing MoS2 nanosheets with PbS quantum dots (QDs). The huge amount of surface dangling bonds of QDs enables them to be ideal receptors for gas molecules. The sensitized MoS2 gas sensor exhibited fast and recoverable response when operated at room temperature, and the limit of NO2 detection was estimated to be 94 ppb. The strategy of sensitizing 2D nanosheets with sensitive QD receptors may enhance receptor and transducer functions as well as the utility factor that determine the sensor performance, offering a powerful new degree of freedom to the surface and interface engineering of semiconductor gas sensors.

Report this publication

Statistics

Seen <100 times