Affordable Access

deepdyve-link
Publisher Website

Molecular tagging and validation of microsatellite markers linked to the low germination stimulant gene (lgs) for Striga resistance in sorghum [Sorghum bicolor (L.) Moench].

Authors
  • Satish, Kanuganti
  • Gutema, Zenbaba
  • Grenier, Cécile
  • Rich, Patrick J
  • Ejeta, Gebisa
Type
Published Article
Journal
Theoretical and Applied Genetics
Publisher
Springer-Verlag
Publication Date
Apr 01, 2012
Volume
124
Issue
6
Pages
989–1003
Identifiers
DOI: 10.1007/s00122-011-1763-9
PMID: 22159758
Source
Medline
License
Unknown

Abstract

Striga is a devastating parasitic weed in Africa and parts of Asia. Low Striga germination stimulant activity, a well-known resistance mechanism in sorghum, is controlled by a single recessive gene (lgs). Molecular markers linked to the lgs gene can accelerate development of Striga-resistant cultivars. Using a high density linkage map constructed with 367 markers (DArT and SSRs) and an in vitro assay for germination stimulant activity towards Striga asiatica in 354 recombinant inbred lines derived from SRN39 (low stimulant) × Shanqui Red (high stimulant), we precisely tagged and mapped the lgs gene on SBI-05 between two tightly linked microsatellite markers SB3344 and SB3352 at a distance of 0.5 and 1.5 cM, respectively. The fine-mapped lgs region was delimited to a 5.8 cM interval with the closest three markers SB3344, SB3346 and SB3343 positioned at 0.5, 0.7 and 0.9 cM, respectively. We validated tightly linked markers in a set of 23 diverse sorghum accessions, most of which were known to be Striga resistant, by genotyping and phenotyping for germination stimulant activity towards both S. asiatica and S. hermonthica. The markers co-segregated with Striga germination stimulant activity in 21 of the 23 tested lines. The lgs locus similarly affected germination stimulant activity for both Striga species. The identified markers would be useful in marker-assisted selection for introgressing this trait into susceptible sorghum cultivars. Examination of the sorghum genome sequence and comparative analysis with the rice genome suggests some candidate genes in the fine-mapped region (400 kb) that may affect strigolactone biosynthesis or exudation. This work should form a foundation for map-based cloning of the lgs gene and aid in elucidation of an exact mechanism for resistance based on low Striga germination stimulant activity.

Report this publication

Statistics

Seen <100 times