Affordable Access

Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols.

  • Hazen, S L
  • Hsu, F F
  • Duffin, K
  • Heinecke, J W
Published Article
The Journal of biological chemistry
Publication Date
Sep 20, 1996
PMID: 8798498


Oxidation of low density lipoprotein (LDL) may be of critical importance in triggering the pathological events of atherosclerosis. Myeloperoxidase, a heme protein secreted by phagocytes, is a potent catalyst for LDL oxidation in vitro, and active enzyme is present in human atherosclerotic lesions. We have explored the possibility that reactive intermediates generated by myeloperoxidase target LDL cholesterol for oxidation. LDL exposed to the myeloperoxidase-H2O2-Cl- system at acidic pH yielded a family of chlorinated sterols. The products were identified by mass spectrometry as a novel dichlorinated sterol, cholesterol alpha-chlorohydrin (6beta-chlorocholestane-(3beta,5alpha)-diol), cholesterol beta-chlorohydrin (5alpha-chlorocholestane-(3beta, 6beta)-diol), and a structurally related cholesterol chlorohydrin. Oxidation of LDL cholesterol by myeloperoxidase required H2O2 and Cl-, suggesting that hypochlorous acid (HOCl) was an intermediate in the reaction. However, HOCl failed to generate chlorinated sterols under chloride-free conditions. Since HOCl is in equilibrium with molecular chlorine (Cl2) through a reaction which requires Cl- and H+, this raised the possibility that Cl2 was the actual chlorinating intermediate. Consonant with this hypothesis, HOCl oxidized LDL cholesterol in the presence of Cl- and at acidic pH. Moreover, in the absence of Cl- and at neutral pH, Cl2 generated the same family of chlorinated sterols as the myeloperoxidase-H2O2-Cl- system. Finally, direct addition of Cl2 to the double bond of cholesterol accounts for dichlorinated sterol formation by myeloperoxidase. Collectively, these results indicate that Cl2 derived from HOCl is the chlorinating intermediate in the oxidation of cholesterol by myeloperoxidase. Our observations suggest that Cl2 generation in acidic compartments may constitute one pathway for oxidation of LDL cholesterol in the artery wall.

Report this publication


Seen <100 times