Affordable Access

Molecular basis of resistance to cytochrome bc1 inhibitors.

Authors
  • Fisher, Nick
  • Meunier, Brigitte
Type
Published Article
Journal
FEMS yeast research
Publication Date
Mar 01, 2008
Volume
8
Issue
2
Pages
183–192
Identifiers
PMID: 18093133
Source
Medline
License
Unknown

Abstract

Inhibitors of the mitochondrial respiratory chain enzyme cytochrome bc1 (respiratory complex III) have been developed as antimicrobial agents. They are used in agriculture to control plant pathogenic fungi and in medicine against human pathogens, such as the malaria parasite Plasmodium falciparum, or Pneumocystis jiroveci (an opportunistic pathogenic fungus life-threatening in immuno-compromised patients). These respiratory inhibitors are thus effective against a broad range of important pathogens. Unfortunately, the problem of acquired resistance has rapidly emerged. A growing number of pathogen isolates resistant to inhibitor treatment have been reported, and this resistance is often linked to mutation within cytochrome b, one of the essential catalytic subunits of the complex. Saccharomyces cerevisiae is an invaluable model in order to assess the impact of the mutations on the sensitivity to the drugs, on the respiratory capacity and the fitness of cells. In this minireview, the inhibitors, their mode of action, and the mutations implicated in resistance and studied in yeast are briefly reviewed. Four mutations that are of particular importance in medicine and in agriculture are briefly reviewed and described in more detail and the molecular basis of resistance and of evolution of the mutations is discussed succinctly.

Report this publication

Statistics

Seen <100 times