Affordable Access

Moduli of parabolic connections on a curve and Riemann-Hilbert correspondence

Authors
  • Inaba, Michi-aki
Type
Preprint
Publication Date
Jun 05, 2012
Submission Date
Jan 31, 2006
Identifiers
arXiv ID: math/0602004
Source
arXiv
License
Yellow
External links

Abstract

Let $(C,\bt)$ ($\bt=(t_1,...,t_n)$) be an $n$-pointed smooth projective curve of genus $g$ and take an element $\blambda=(\lambda^{(i)}_j)\in\C^{nr}$ such that $-\sum_{i,j}\lambda^{(i)}_j=d\in\mathbf{Z}$. For a weight $\balpha$, let $M_C^{\balpha}(\bt,\blambda)$ be the moduli space of $\balpha$-stable $(\bt,\blambda)$-parabolic connections on $C$ and let $RP_r(C,\bt)_{\ba}$ be the moduli space of representations of the fundamental group $\pi_1(C\setminus\{t_1,...,t_n\},*)$ with the local monodromy data $\ba$ for a certain $\ba\in\C^{nr}$. Then we prove that the morphism $\RH:M_C^{\balpha}(\bt,\blambda)\rightarrow RP_r(C,\bt)_{\ba}$ determined by the Riemann-Hilbert correspondence is a proper surjective bimeromorphic morphism. As a corollary, we prove the geometric Painlev\'e property of the isomonodromic deformation defined on the moduli space of parabolic connections.

Report this publication

Statistics

Seen <100 times