Affordable Access

A modified probabilistic neural network for partial volume segmentation in brain MR image.

Authors
  • Song, Tao
  • Jamshidi, Mo M
  • Lee, Roland R
  • Huang, Mingxiong
Type
Published Article
Journal
IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council
Publication Date
Sep 01, 2007
Volume
18
Issue
5
Pages
1424–1432
Identifiers
PMID: 18220190
Source
Medline
License
Unknown

Abstract

A modified probabilistic neural network (PNN) for brain tissue segmentation with magnetic resonance imaging (MRI) is proposed. In this approach, covariance matrices are used to replace the singular smoothing factor in the PNN's kernel function, and weighting factors are added in the pattern of summation layer. This weighted probabilistic neural network (WPNN) classifier can account for partial volume effects, which exist commonly in MRI, not only in the final result stage, but also in the modeling process. It adopts the self-organizing map (SOM) neural network to overly segment the input MR image, and yield reference vectors necessary for probabilistic density function (pdf) estimation. A supervised "soft" labeling mechanism based on Bayesian rule is developed, so that weighting factors can be generated along with corresponding SOM reference vectors. Tissue classification results from various algorithms are compared, and the effectiveness and robustness of the proposed approach are demonstrated.

Report this publication

Statistics

Seen <100 times