Affordable Access

Modeling of turbulence and acoustics in complex compressible flows using Theory, Large Eddy Simulation and Machine Learning

Authors
  • Giauque, Alexis
Publication Date
Jul 04, 2024
Source
Hal-Diderot
Keywords
Language
English
License
Unknown
External links

Abstract

Chapter 3 : Combustion noise modeling: This chapter describes in more details my contributions regarding combustion noise. The question of the modeling of the Flame Transfer Functions (FTF) for the analysis of thermoacoustic stability maps is first adressed. Results concerning the analytical modeling of indirect combustion noise as well as the optimal design implications are then presented. Finally, the work devoted to the derivation and analysis of disturbance energies in reacting flows is summarized.Chapter 4 : Broadband rotor noise modeling: Fan noise sources are presented as well as the LMFA testing facility hosting the ECL5 Fan/OGV stage configuration. After a quick summary of the numerical setup for LES, the numerous results obtained through numerical analysis are described. Namely, the impact on the acoustics of a recirculation bubble is presented. The tip gap region is analyzed through its peculiar aerodynamic and aeroacoustic behavior. Finally, the 360 results are confronted to the experiments.Chapter 5 : Turbulence in dense gas flows modeling: In this chapter, after a brief introduction to the specifics of dense gas flows, DNS of academic flows involving dense gases are presented. The peculiar features of turbulence in Homogeneous Isotropic Turbulence (HIT) and compressible mixing layer are analyzed. The behavior of SubGrid-Scale (SGS) terms is explored through a-priori filtering and through the analysis of the performance of existing SGS model. New SGS models are developed using machine learning techniques (especially Artificial Neural Networks). Their merits are analyzed a-priori and a-posteriori using experimental results from Cambridge University.

Report this publication

Statistics

Seen <100 times