Affordable Access

Modeling of austenite to ferrite transformation in steels

Authors
  • Perevoshchikova, Nataliya
Publication Date
Nov 13, 2012
Source
Kaleidoscope Open Archive
Keywords
Language
English
License
Unknown
External links

Abstract

transformation in steels focusing on the thermodynamic and kinetics conditions at the alpha/gamma interfaces during the ferrite growth. The first chapter deals with the determination of thermodynamic equilibria between alpha and gamma with CalPhad thermodynamic description. We have developed a new hybrid algorithm combining the construction of a convex hull to the more classical Newton-Raphson method to compute two phase equilibria in multicomponent alloys with two sublattices. Its capabilities are demonstrated on ternary Fe-C-Cr and quaternary Fe-C-Cr-Mo steels. In the second chapter, we present a thick interface model aiming to predict the whole spectrum of conditions at an alpha/gamma interface during ferrite growth, from full equilibrium to paraequilibrium with intermediate cases as the most interesting feature. The model, despite its numerous simplifying assumptions to facilitate its numerical implementation, allows to predict some peculiar kinetics in Fe-C-X systems with a minimum of fitting parameters, mainly the ratio between the diffusivities of the substitutional element inside the thick interface and in bulk austenite. The third chapter deals with the phase field model of austenite to ferrite transformation in steels. A thorough analysis on the conditions at the interface has been performed using the technique of matched asymptotic expansions. Special attention is given to clarify the role of the interface mobility on the growth regimes both in simple Fe-C alloys and in more complex Fe-C-Mn alloys

Report this publication

Statistics

Seen <100 times