Morphological Modelling and Transport Properties of Mesoporous Alumina
- Authors
- Publication Date
- Sep 23, 2016
- Source
- Kaleidoscope Open Archive
- Keywords
- Language
- English
- License
- Unknown
- External links
Abstract
In a work made at Centre de Morphologie Mathématique and IFPEN, we study the microstructure and physical properties of mesoporous alumina. This is a catalyst carrier used in the petroleum refining industry. Highly porous, it contains disordered ''platelets'' at the nanoscale. The mass transport properties of the catalyst carrier are strongly influenced by the morphology of the porous microstructure. We focus on the modeling of the microstructure and of transport properties of mesoporous alumina, using numerical and theoretical tools derived from image analysis and random sets models. On the one hand, methods are developed to characterize and model the microstructure, by extracting and combining information from transmission electron microscope (TEM) images and nitrogen porosimetry curves, among others. On the other hand, the numerical homogenization relies on full-field Fourier transform computations (FFT).The material is first characterized experimentally by nitrogen porosimetry and pulse-field gradient nuclear magnetic resonance (PFG-NMR). TEM images, obtained on samples of various thicknesses are filtered and measured in terms of correlation function. The high-frequency noise caused by carbon membrane support is identified and integrated in the TEM image model. Based on the 2D TEM images, a two-scale random set model of 3D microstructure is developed. It takes into account the platelet shape, platelet size, local alignments and aggregations effects which are numerically identified. The procedure is validated by comparing the model and experimental images in terms of correlation function and specific surface area estimated by nitrogen porosimetry.Next, a procedure is proposed to simulate porosimetry isotherms in general porous media, including random microstructures. Based on simple morphological operations, it extends an earlier approach of mercury porosimetry. Multilayer adsorption at low pressure is simulated by a dilation operation whereas the menisci of the vapor-liquid interface occurring during adsorption are simulated by closing the solid phase with spherical structuring elements. To simulate desorption, a combination of closing and hole-filling operations is used. The desorption threshold is obtained from a percolation analysis of the gaseous phase. The method, validated first on simple geometries, is compared to previous results of the literature, allowing us to predict the hysteresis and pore size distribution associated to porosimetry. It is applied on 3D microstructures of mesoporous alumina. To account for the pressure threshold during desorption, we propose a refined three-scale model for mesoporous alumina, that reproduces the correlation function and the desorption branch of porosimetry isotherms.Finally, Fick diffusion, Darcy permeability, and elastic moduli are numerically predicted using the FFT method and the two-scale and three-scale models of mesoporous alumina. The hindering effects in diffusion are estimated by the Renkin's equation. The effective diffusion coefficients and the tortuosity factors are estimated from the flux field, taking into account hindering effects. The effects of platelet shape, alignment and aggregation on the diffusion property are studied. The numerical estimation is validated from experimental PFG-NMR results.