Affordable Access

Mod 2 cohomology of combinatorial Grassmannians

Authors
Type
Published Article
Publication Date
Submission Date
Identifiers
arXiv ID: math/9911158
Source
arXiv
License
Unknown
External links

Abstract

Matroid bundles, introduced by MacPherson, are combinatorial analogues of real vector bundles. This paper sets up the foundations of matroid bundles, and defines a natural transformation from isomorphism classes of real vector bundles to isomorphism classes of matroid bundles, as well as a transformation from matroid bundles to spherical quasifibrations. The poset of oriented matroids of a fixed rank classifies matroid bundles, and the above transformations give a splitting from topology to combinatorics back to topology. This shows the mod 2 cohomology of the poset of rank k oriented matroids (this poset classifies matroid bundles) contains the free polynomial ring on the first k Stiefel-Whitney classes. The homotopy groups of this poset are related to the image of the J-homomorphism from stable homotopy theory.

Statistics

Seen <100 times