Affordable Access

Access to the full text

Minocycline attenuation of rat corpus callosum abnormality mediated by low-dose lipopolysaccharide-induced microglia activation

Authors
  • Zhang, Jingdong1, 2
  • Boska, Michael1
  • Zheng, Ya1, 3
  • Liu, Jianuo1
  • Fox, Howard S.1
  • Xiong, Huangui1
  • 1 University of Nebraska Medical Center, Omaha, NE, 68198, USA , Omaha (United States)
  • 2 University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA , Cincinnati (United States)
  • 3 Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200065, China , Shanghai (China)
Type
Published Article
Journal
Journal of Neuroinflammation
Publisher
Springer (Biomed Central Ltd.)
Publication Date
Apr 26, 2021
Volume
18
Issue
1
Identifiers
DOI: 10.1186/s12974-021-02142-x
Source
Springer Nature
Keywords
License
Green

Abstract

BackgroundMicroglia are resident innate immune cells in the brain, and activation of these myeloid cells results in secretion of a variety of pro-inflammatory molecules, leading to the development of neurodegenerative disorders. Lipopolysaccharide (LPS) is a widely used experimental stimulant in microglia activation. We have previously shown that LPS produced microglia activation and evoked detectable functional abnormalities in rat corpus callosum (CC) in vitro. Here, we further validated the effects of low-dose LPS-induced microglia activation and resultant white matter abnormality in the CC in an animal model and examined its attenuation by an anti-inflammatory agent minocycline.MethodsTwenty-four SD rats were divided randomly into three groups and intra-peritoneally injected daily with saline, LPS, and LPS + minocycline, respectively. All animals were subject to MRI tests 6 days post-injection. The animals were then sacrificed to harvest the CC tissues for electrophysiology, western blotting, and immunocytochemistry. One-way ANOVA with Tukey’s post-test of all pair of columns was employed statistical analyses.ResultsSystemic administration of LPS produced microglial activation in the CC as illustrated by Iba-1 immunofluorescent staining. We observed that a large number of Iba-1-positive microglial cells were hyper-ramified with hypertrophic somata or even amoeba like in the LPS-treated animals, and such changes were significantly reduced by co-administration of minocycline. Electrophysiological recordings of axonal compound action potential (CAP) in the brain slices contained the CC revealed an impairment on the CC functionality as detected by a reduction in CAP magnitude. Such an impairment was supported by a reduction of fast axonal transportation evidenced by β-amyloid precursor protein accumulation. These alterations were attenuated by minocycline, demonstrating minocycline reduction of microglia-mediated interruption of white matter integrity and function in the CC.ConclusionsSystemic administration of LPS produced microglia activation in the CC and resultant functional abnormalities that were attenuated by an anti-inflammatory agent minocycline.

Report this publication

Statistics

Seen <100 times