Affordable Access

MicroRNA Regulation of the Autotaxin-Lysophosphatidic Acid Signaling Axis

Authors
  • murph, mandi m.
Publication Date
Sep 14, 2019
Source
MDPI
Keywords
Language
English
License
Green
External links

Abstract

The revelation that microRNAs (miRNAs) exist within the human genome uncovered an underappreciated mechanism of gene expression. For cells to regulate expression of their genes, miRNA molecules and argonaute proteins bind to mRNAs and interfere with efficient translation of the RNA transcript. Although miRNAs have important roles in normal tissues, miRNAs may adopt aberrant functions in malignant cells depending on their classification as either a tumor suppressor or oncogenic miRNA. Within this review, the current status of miRNA regulation is described in the context of signaling through the lysophosphatidic acid receptors, including the lysophosphatidic acid-producing enzyme, autotaxin. Thus far, research has revealed miRNAs that increase in response to lysophosphatidic acid stimulation, such as miR-21, miR-30c-2-3p, and miR-122. Other miRNAs inhibit the translation of lysophosphatidic acid receptors, such as miR-15b, miR-23a, and miR200c, or proteins that are downstream of lysophosphatidic acid signaling, such as miR-146 and miR-21. With thousands of miRNAs still uncharacterized, it is anticipated that the complex regulation of lysophosphatidic acid signaling by miRNAs will continue to be elucidated. RNA-based therapeutics have entered the clinic with enormous potential in precision medicine. This exciting field is rapidly emerging and it will be fascinating to witness its expansion in scope.

Report this publication

Statistics

Seen <100 times