Affordable Access

Micro-macro modelling approach of vegetal wools thermal conductivity

Authors
  • PIEGAY, Clément
  • GLE, Philippe
  • GOURLAY, Etienne
  • GOURDON, Emmanuel
  • MARCEAU, Sandrine
Publication Date
Jan 01, 2021
Source
Portail Documentaire MADIS
Keywords
License
Unknown
External links

Abstract

Biosourced materials such as vegetal wools offer major thermal insulation advantages in the green buildings field. Experimental characterisations of vegetal wools thermal conductivity as a function of their density show the existence of an optimum conduction-radiation coupled value. This specific point, as well as the properties of vegetal wools are related to the large variability of shapes and sizes of their fibres. In order to take this specificity into account, it seems particularly relevant to use micro-macro modelling methods to predict the thermal conductivities related to both conduction and radiation heat transfer phenomena. In a first time, a self-consistent method based on a cylindrical geometry (SCMcyl) is used as a modelling approach for conduction transfers. Then, a modelling approach developed by Bankvall and based on an equivalent fibre radius value is used for radiation transfers. So, by coupling these two approaches, it is possible to obtain an equivalent thermal conductivity of fibrous materials as a function of density. Finally, this method is validated by comparison with experimental data.

Report this publication

Statistics

Seen <100 times