Affordable Access

deepdyve-link
Publisher Website

Microbial community structure and microbial networks correspond to nutrient gradients within coastal wetlands of the Laurentian Great Lakes.

Authors
  • Horton, Dean J1
  • Theis, Kevin R2
  • Uzarski, Donald G1
  • Learman, Deric R1
  • 1 Institute for Great Lakes Research and Department of Biology, Central Michigan University, Mt. Pleasant, MI, USA.
  • 2 Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, USA.
Type
Published Article
Journal
FEMS Microbiology Ecology
Publisher
Oxford University Press
Publication Date
Apr 01, 2019
Volume
95
Issue
4
Identifiers
DOI: 10.1093/femsec/fiz033
PMID: 30855669
Source
Medline
Keywords
Language
English
License
Unknown

Abstract

Microbial communities within the soil of Laurentian Great Lakes coastal wetlands drive biogeochemical cycles and provide several other ecosystem services. However, there exists a lack of understanding of how microbial communities respond to nutrient gradients and human activity in these systems. This research sought to address the lack of understanding through exploration of relationships among nutrient gradients, microbial community diversity, and microbial networks. Significant differences in microbial community structure were found among coastal wetlands within the western basin of Lake Erie and all other wetlands studied (three regions within Saginaw Bay and one region in the Beaver Archipelago). These diversity differences coincided with higher nutrient levels within the Lake Erie region. Site-to-site variability also existed within the majority of the regions studied, suggesting site-scale heterogeneity may impact microbial community structure. Several subnetworks of microbial communities and individual community members were related to chemical gradients among wetland regions, revealing several candidate indicator communities and taxa that may be useful for Great Lakes coastal wetland management. This research provides an initial characterization of microbial communities among Great Lakes coastal wetlands and demonstrates that microbial communities could be negatively impacted by anthropogenic activities. © FEMS 2019.

Report this publication

Statistics

Seen <100 times