Affordable Access

Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi.

Authors
  • Xu, Ying
  • Feller, Georges
  • Gerday, Charles
  • Glansdorff, Nicolas
Type
Published Article
Journal
Journal of bacteriology
Publication Date
Apr 01, 2003
Volume
185
Issue
7
Pages
2161–2168
Identifiers
PMID: 12644485
Source
Medline
License
Unknown

Abstract

The enzyme ornithine carbamoyltransferase (OTCase) of Moritella abyssi (OTCase(Mab)), a new, strictly psychrophilic and piezophilic bacterial species, was purified. OTCase(Mab) displays maximal activity at rather low temperatures (23 to 25 degrees C) compared to other cold-active enzymes and is much less thermoresistant than its homologues from Escherichia coli or thermophilic procaryotes. In vitro the enzyme is in equilibrium between a trimeric state and a dodecameric, more stable state. The melting point and denaturation enthalpy changes for the two forms are considerably lower than the corresponding values for the dodecameric Pyrococcus furiosus OTCase and for a thermolabile trimeric mutant thereof. OTCase(Mab) displays higher K(m) values for ornithine and carbamoyl phosphate than mesophilic and thermophilic OTCases and is only weakly inhibited by the bisubstrate analogue delta-N-phosphonoacetyl-L-ornithine (PALO). OTCase(Mab) differs from other, nonpsychrophilic OTCases by substitutions in the most conserved motifs, which probably contribute to the comparatively high K(m) values and the lower sensitivity to PALO. The K(m) for ornithine, however, is substantially lower at low temperatures. A survey of the catalytic efficiencies (k(cat)/K(m)) of OTCases adapted to different temperatures showed that OTCase(Mab) activity remains suboptimal at low temperature despite the 4.5-fold decrease in the K(m) value for ornithine observed when the temperature is brought from 20 to 5 degrees C. OTCase(Mab) adaptation to cold indicates a trade-off between affinity and catalytic velocity, suggesting that optimization of key metabolic enzymes at low temperatures may be constrained by natural limits.

Report this publication

Statistics

Seen <100 times