Affordable Access

Mechanisms of coexistence in competitive metacommunities.

Authors
  • Amarasekare, Priyanga
  • Hoopes, Martha F
  • Mouquet, Nicolas
  • Holyoak, Marcel
Type
Published Article
Journal
The American Naturalist
Publisher
The University of Chicago Press
Publication Date
Sep 01, 2004
Volume
164
Issue
3
Pages
310–326
Identifiers
PMID: 15478087
Source
Medline
License
Unknown

Abstract

Although there is a large body of theory on spatial competitive coexistence, very little of it involves comparative analyses of alternative mechanisms. We thus have limited knowledge of the conditions under which multiple spatial mechanisms can operate or of emergent properties arising from interactions between mechanisms. Here we present a mathematical framework that allows for comparative analysis of spatial coexistence mechanisms. The basis for comparison is mechanisms operating in spatially homogeneous competitive environments (e.g., life-history trade-offs) versus mechanisms operating in spatially heterogeneous competitive environments (e.g., source-sink dynamics). Our comparative approach leads to several new insights about spatial coexistence. First, we show that spatial variation in the expression of a life-history trade-off leads to a unique regional pattern that cannot be predicted by considering trade-offs or source-sink dynamics alone. This result represents an instance where spatial heterogeneity constrains rather than promotes coexistence, and it illustrates the kind of counterintuitive emergent properties that arise due to interactions between different classes of mechanisms. Second, we clarify the role of dispersal mortality in spatial coexistence. Previous studies have shown that coexistence can be constrained or facilitated by dispersal mortality. Our broader analysis distinguishes situations where dispersal mortality is not necessary for coexistence from those where such mortality is essential for coexistence because it preserves spatial variation in the strength of competition. These results form the basis for two important future directions: evolution of life-history traits in spatially heterogeneous environments and elucidation of the cause and effect relationship(s) between biodiversity and ecosystem functioning.

Report this publication

Statistics

Seen <100 times