Affordable Access

Maturational differences in lung NF-κB activation and their role in tolerance to hyperoxia

Authors
Publisher
American Society for Clinical Investigation
Publication Date
Source
PMC
Keywords
  • Article
Disciplines
  • Biology

Abstract

Neonatal rodents are more tolerant to hyperoxia than adults. We determined whether maturational differences in lung NF-κB activation could account for the differences. After hyperoxic exposure (O2 > 95%), neonatal (<12 hours old) lung NF-κB binding was increased and reached a maximum between 8 and 16 hours, whereas in adults no changes were observed. Additionally, neonatal NF-κB/luciferase transgenic mice (incorporating 2 NF-κB consensus sequences driving luciferase gene expression) demonstrated enhanced in vivo NF-κB activation after hyperoxia in real time. In the lungs of neonates, there was a propensity toward NF-κB activation as evidenced by increased lung I-κB kinase protein levels, I-κBα phosphorylation, β-transducin repeat–containing protein levels, and total I-κBα degradation. Increased lung p-JNK immunoreactive protein was observed only in the adult lung. Inhibition of pI-κBα by BAY 11-7085 resulted in decreased Bcl-2 protein levels in neonatal lung homogenates and decreased cell viability in lung primary cultures after hyperoxic exposure. Furthermore, neonatal p50-null mutant (p50–/–) mice showed increased lung DNA degradation and decreased survival in hyperoxia compared with WT mice. These data demonstrate that there are maturational differences in lung NF-κB activation and that enhanced NF-κB may serve to protect the neonatal lung from acute hyperoxic injury via inhibition of apoptosis.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F