Affordable Access

Mathematical model for describing reactions of residual chlorine with organic matter in reclaimed wastewater.

Authors
Type
Published Article
Journal
Water science and technology : a journal of the International Association on Water Pollution Research
Publication Date
Volume
50
Issue
2
Pages
195–201
Identifiers
PMID: 15344791
Source
Medline
License
Unknown

Abstract

Among several applications of urban wastewater reuse, use of reclaimed wastewater to sustain stream flows has become attractive in the urban area. Since these rivers are used for recreational purposes and for restoring aquatic eco-system, the adequate control of residual chlorine is essential. Mathematical model for describing reactions between residual chlorine and organic matter in reclaimed wastewater has been developed. The model considers the effect of molecular weight distribution of organic matter on the reaction rate. Lab-scale experiments were performed to estimate reaction rates constants and to examine their temperature dependency. The experiments showed that 1) the smaller organic matter gave the larger reaction rate; 2) temperature effect on reaction rate was described by the Arrhenius formula; 3) decline of free chlorine had more temperature dependency than combined chlorine. The comparison of computed results with data from lab-scale experiments confirmed the validity of the model. We used the one-dimensional dispersion model with proposed reaction model and examined the seasonal variation of residual chlorine profile along the river sustained by reclaimed wastewater in Sapporo. Simulation showed that seasonal variation of nitrification performance in secondary treatment as well as change in temperature caused seasonal variation in residual chlorine profile along the river.

Statistics

Seen <100 times