Affordable Access

Mammalian nonsarcomeric myosin regulatory light chains are encoded by two differentially regulated and linked genes.

Authors
Type
Published Article
Journal
The Journal of cell biology
Publication Date
Volume
111
Issue
3
Pages
1127–1135
Identifiers
PMID: 2391362
Source
Medline
License
Unknown

Abstract

The myosin 20,000-D regulatory light chain (RLC) has a central role in smooth muscle contraction. Previous work has suggested either the presence of two RLC isoforms, one specific for nonmuscle and one specific for smooth muscle, or the absence of a true smooth muscle-specific isoform, in which instance smooth muscle cells would use nonmuscle isoforms. To address this issue directly, we have isolated rat RLC cDNAs and corresponding genomic sequences of two smooth muscle RLC based on homology to the amino acid sequence of the chicken gizzard RLC. These cDNAs are highly homologous in their amino acid coding regions and contain unique 3'-untranslated regions. RNA analyses of rat tissue using these unique 3'-untranslated regions revealed that their expression is differentially regulated. However, one cDNA (RLC-B), predominantly a nonmuscle isoform, based on abundant expression in nonmuscle tissues including brain, spleen, and lung, is easily detected in smooth muscle tissues. The other cDNA (RLC-A; see Taubman, M., J. W. Grant, and B. Nadal-Ginard. 1987. J. Cell Biol. 104:1505-1513) was detected in a variety of nonmuscle, smooth muscle, and sarcomeric tissues. RNA analyses comparing expression of both RLC genes with the actin gene family and smooth muscle specific alpha-tropomyosin demonstrated that neither RLC gene was strictly smooth muscle specific. RNA analyses of cell lines demonstrated that both of the RLC genes are expressed in a variety of cell types. The complete genomic structure of RLC-A and close linkage to RLC-B is described.

Statistics

Seen <100 times