Affordable Access

Access to the full text

Magneto-plasmonic biocompatible nanorice

Authors
  • García–Rosas, Carlos M.1, 2
  • Medina, Luis A.3, 4
  • Lopez, Priscilla5
  • Large, Nicolas5
  • Reyes–Coronado, Alejandro1
  • 1 Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico , Ciudad Universitaria (Mexico)
  • 2 Institut National de la Recherche Scientifique–Énergie Matériaux Télécommunications, 1650 boulevard Lionel Boulet, Varennes, Québec, J3X 1S2, Canada , Varennes (Canada)
  • 3 Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico , Mexico City (Mexico)
  • 4 Unidad de Investigación Biomédica en Cáncer INCan–UNAM, Mexico City, 14080, Mexico , Mexico City (Mexico)
  • 5 The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA , San Antonio (United States)
Type
Published Article
Journal
Journal of Nanoparticle Research
Publisher
Springer-Verlag
Publication Date
Jul 07, 2021
Volume
23
Issue
7
Identifiers
DOI: 10.1007/s11051-021-05261-x
Source
Springer Nature
Keywords
Disciplines
  • Research Paper
License
Yellow

Abstract

In this work, we conduct a comprehensive computational study of the optical and photothermal properties of multifunctional α-Fe2O3/Au/SiO2 nanorice matryoshka nanoparticles using a combination of boundary element method, finite element method, and discontinuous Galerkin time-domain method. The magnetic core in the nanorice allows their use as a contrast agent in nuclear magnetic resonance technique as well as dragging and rotating the nanoparticles with an external magnetic field, while the plasmonic counterpart enables the excitation of localized surface plasmon resonances. We show that both longitudinal and transverse plasmonic resonances induced within the hybrid asymmetric nanoparticle can be sintonized into the 650–900 nm range of the electromagnetic spectrum, where the absorption of tissue is minimal. Thus, it is possible to heat the nanoparticle’s local surrounding environment, making the proposed nanorice particles good candidates for thermal ablation treatment of cancer cells. We show that the local temperature in the nanorice surroundings can be increased by up to 80 K while illuminating the hybrid system at the resonant frequency of the longitudinal plasmon mode with typical and reasonable optical power density of 5 W/cm2.

Report this publication

Statistics

Seen <100 times