Affordable Access

MAD2DeltaC induces aneuploidy and promotes anchorage-independent growth in human prostate epithelial cells.

Authors
Type
Published Article
Journal
Oncogene
0950-9232
Publisher
Nature Publishing Group
Publication Date
Volume
27
Issue
3
Pages
347–357
Identifiers
PMID: 17621272
Source
Medline

Abstract

The mitotic arrest deficient 2 (MAD2) is suggested to play a key role in a functional mitotic checkpoint because of its inhibitory effect on anaphase-promoting complex/cyclosome (APC/C) during mitosis. The binding of MAD2 to mitotic checkpoint regulators MAD1 and Cdc20 is thought to be crucial for its function and loss of which leads to functional inactivation of the MAD2 protein. However, little is known about the biological significance of this MAD2 mutant in human cells. In this study, we stably transfected a C-terminal-deleted MAD2 gene (MAD2DeltaC) into a human prostate epithelial cell line, Hpr-1 and studied its effect on chromosomal instability, cell proliferation, mitotic checkpoint control and soft agar colony-forming ability. We found that MAD2DeltaC was able to induce aneuploidy through promoting chromosomal duplication, which was a result of an impaired mitotic checkpoint and cytokinesis, suggesting a crucial role of MAD2-mediated mitotic checkpoint in chromosome stability in human cells. In addition, the MAD2DeltaC-transfected cells displayed anchorage-independent growth in soft agar after challenged by 7,12-dimethylbenz[A]anthracene (DMBA), demonstrating a cancer-promoting effect of a defective mitotic checkpoint in human cells. Furthermore, the DMBA-induced transformation was accompanied by a complete loss of DNA damage-induced p53 response and activation of the MAPK pathway in MAD2DeltaC cells. These results indicate that a defective mitotic checkpoint alone is not a direct cause of tumorigenesis, but it may predispose human cells to carcinogen-induced malignant transformation. The evidence presented here provides a link between MAD2 inactivation and malignant transformation of epithelial cells.

There are no comments yet on this publication. Be the first to share your thoughts.

Statistics

Seen <100 times
0 Comments
F