Affordable Access

Access to the full text

M2-brane surface operators and gauge theory dualities in Toda

Authors
  • Gomis, Jaume1
  • Le Floch, Bruno1, 2
  • 1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada , Waterloo (Canada)
  • 2 Laboratoire de Physique Théorique de l’ École Normale Supérieure, (Unité mixte (UMR 8549) du CNRS et de l’ENS, Paris), Paris, 75005, France , Paris (France)
Type
Published Article
Journal
Journal of High Energy Physics
Publisher
Springer-Verlag
Publication Date
Apr 29, 2016
Volume
2016
Issue
4
Identifiers
DOI: 10.1007/JHEP04(2016)183
Source
Springer Nature
Keywords
License
Green

Abstract

We give a microscopic two dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (2, 2) gauge theory description of arbitrary M2-branes ending on Nf M5-branes wrapping a punctured Riemann surface. These realize surface operators in four dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 field theories. We show that the expectation value of these surface operators on the sphere is captured by a Toda CFT correlation function in the presence of an additional degenerate vertex operator labelled by a representation ℛ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{\mathcal{R}} $$\end{document} of SU(Nf ), which also labels M2-branes ending on M5-branes. We prove that symmetries of Toda CFT correlators provide a geometric realization of dualities between two dimensional gauge theories, including N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (2, 2) analogues of Seiberg and Kutasov-Schwimmer dualities. As a bonus, we find new explicit conformal blocks, braiding matrices, and fusion rules in Toda CFT.

Report this publication

Statistics

Seen <100 times