Affordable Access

Lunar Laser Ranging Test of the Invariance of c

Authors
Type
Preprint
Publication Date
Submission Date
Source
arXiv
License
Yellow
External links

Abstract

The speed of laser light pulses launched from Earth and returned by a retro-reflector on the Moon was calculated from precision round-trip time-of-flight measurements and modeled distances. The measured speed of light (c) in the moving observers rest frame was found to exceed the canonical value c = 299,792,458 m/s by 200+/-10 m/s, just the speed of the observatory along the line-of-sight due to the rotation of the Earth during the measurements. This is a first-order violation of local Lorentz invariance; the speed of light seems to depend on the motion of the observer after all, as in classical wave theory, and implies that a preferred reference frame exists for the propagation of light. However, the present experiment cannot identify the physical system to which such a reference frame might be tied.

Statistics

Seen <100 times