Affordable Access

Access to the full text

Low-Temperature Noise Performance of SuperSpec and Other Developments on the Path to Deployment

  • McGeehan, R.1
  • Barry, P. S.1, 2
  • Shirokoff, E.1
  • Bradford, C. M.3, 4
  • Che, G.5
  • Glenn, J.6
  • Gordon, S.5
  • Hailey-Dunsheath, S.3
  • Hollister, M.3
  • Kovács, A.3
  • LeDuc, H. G.4
  • Mauskopf, P.5
  • McKenney, C.7
  • Reck, T.4
  • Redford, J.3
  • Tucker, C.2
  • Turner, J.8
  • Walker, S.6
  • Wheeler, J.6
  • Zmuidzinas, J.3, 4
  • 1 University of Chicago, Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL, 60637, USA , Chicago (United States)
  • 2 Cardiff University, School of Physics and Astronomy, 5 The Parade, Cardiff, CF24 3AA, UK , Cardiff (United Kingdom)
  • 3 California Institute of Technology, 1200 E. California Blvd, Pasadena, 91125, USA , Pasadena (United States)
  • 4 Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA , Pasadena (United States)
  • 5 Arizona State University, School of Earth and Space Exploration, Tempe, AZ, 85287, USA , Tempe (United States)
  • 6 University of Colorado, Center for Astrophysics and Space Astronomy, Boulder, CO, 80309, USA , Boulder (United States)
  • 7 National Institute of Standards and Technology, 325 Broadway, Boulder, CO, 80305, USA , Boulder (United States)
  • 8 University of Wyoming, Department of Physics and Astronomy, 1000 E. University, Laramie, WY, 82071, USA , Laramie (United States)
Published Article
Journal of Low Temperature Physics
Springer US
Publication Date
Sep 17, 2018
DOI: 10.1007/s10909-018-2061-6
Springer Nature


SuperSpec is a compact on-chip spectrometer operating at mm and sub-mm wavelengths which will enable the construction of sensitive multibeam spectrometers. SuperSpec employs a filter bank architecture, consisting of lithographically patterned niobium superconducting microstrip mm-wave resonators. The power admitted by each resonator is detected by a titanium nitride lumped-element kinetic inductance detector (KID) with resonant frequency from 100 to 200 MHz. We present a characterization of the detector noise performance down to 10 mK measured in a dark setting. We report a device NEP of 2.7×10-18WHz-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.7 \times 10^{-18}\, \hbox {W Hz}^{-1/2}$$\end{document} at 210 mK, which is below the expected photon noise level at high-altitude ground-based observatories. The NEP decreases to a constant value of approximately 7.0×10-19WHz-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.0 \times 10^{-19}\, \hbox {W Hz}^{-1/2}$$\end{document} below 130 mK. The white noise is well modeled by thermal generation–recombination noise (GR noise) down to 130 mK and a noise floor at low temperatures. Moreover, the addition of low-pass coaxial filters further reduces the noise floor to achieve an NEP of 5.7×10-19WHz-1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.7 \times 10^{-19} \,\hbox {W Hz}^{-1/2}$$\end{document} below 100 mK. We discuss a photolithographic technique to adjust KID resonances that results in an f0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{0}$$\end{document} designed versus measured scatter of 1.7×10-5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.7 \times 10^{-5}$$\end{document}, which will allow a significant reduction in resonators lost to clashes in full-scale designs. Finally, we present a demonstration of a new ROACH-2-based readout system operating below 500 MHz and show preliminary data indicating the suitability of this system for future highly multiplexed KID arrays.

Report this publication


Seen <100 times