Affordable Access

Low-Speed Longitudinal Stability and Lateral-Control Characteristics of a 0.3-Scale Model of the Republic RF-84F Airplane at a Reynolds Number of 9x10(exp 6)

Authors
  • Bollech, Thomas V.
  • Kelly, H. Neale
Publication Date
Feb 23, 1954
Source
NASA Technical Reports Server
Keywords
License
Unknown

Abstract

An investigation was conducted in the Langley 19-foot pressure tunnel on a 0.3-scale model of the Republic RF-84F airplane to determine modifications which would eliminate the pitch-up that occurred near maximum lift during flight tests of the airplane. The effects of high-lift and stall-control devices, horizontal tail locations, external stores, and various inlets on the longitudinal characteristics of the model were investigated. For the most part, these tests were conducted at a Reynolds number of 9.0 x 10(exp 6) and a Mach number of 0.19. The results indicated that from the standpoint of stability the inlets should possess blunted side bodies. The horizontal tail located at either the highest or lowest position investigated improved the stability of the model. Three configurations were found for the model equipped with the production tail which eliminated the pitch-up through the lift range up to the maximum lift and provided a stable static margin which did not vary more than 15% of the mean aerodynamic chord through the lift range up to 85% of maximum lift. The three configurations are as follows: the production wing-fuselage-tail combination with an inlet similar to the production inlet but smaller in plan form in conjunction with either (1) a wing fence located at 65% of the win semispan or (2) an 11.7% chord leading-edge extension extending from 65.8 to 95.8% of the wing semispan and (3) the production wing-fuselage-tail combination with the production inlet and an 11.7% chord leading-edge extension extending from 70.8 to 95.8% of the wing semispan.

Report this publication

Statistics

Seen <100 times