Affordable Access

Low energy intensity production of fuel-grade bio-butanol enabled by membrane-based extraction

  • Kim, JH
  • Cook, M
  • Peeva, L
  • Yeo, JIN
  • Bolton, LW
  • Lee, YM
  • Livingston, A
Publication Date
Oct 23, 2020
UPCommons. Portal del coneixement obert de la UPC
External links


Widespread use of biofuels is inhibited by the significant energy burden of recovering fuel products from aqueous fermentation systems. Here, we describe a membrane-based extraction (perstraction) system for the recovery of fuel-grade biobutanol from fermentation broths which can extract n-butanol with high purity (>99.5%) while using less than 25% of the energy of current technology options. This is achieved by combining a spray-coated thin-film composite membrane with 2-ethyl-1-hexanol as an extractant. The membrane successfully protects the micro-organisms from the extractant, which, although ideal in other respects, is a metabolic inhibitor. In contrast to water, the extractant does not form a heterogeneous azeotrope with n-butanol, and the overall energy consumption of for n-butanol production is 3.9 MJ kg-1, substantially less than other recovery processes (17.0 – 29.4 MJ kg-1). By (a) extracting n-butanol from the fermentation broth without a phase change, (b) breaking the heterogeneous azeotrope relationship (less energy consumption for distillation), and (c) utilizing a small volume ratio of extractant : fermentation broth (1:100, v/v), the need for high energy intensity processes such as pervaporation, gas stripping or liquid-liquid extraction is avoided. The application of this perstraction system to continuous production of higher alcohols is developed and shown to be highly favourable.

Report this publication


Seen <100 times