Affordable Access

deepdyve-link deepdyve-link
Publisher Website

Loop-mediated isothermal amplification method for differentiation and rapid detection of Taenia species.

Authors
Type
Published Article
Journal
Journal of Clinical Microbiology
1098-660X
Publisher
American Society for Microbiology
Publication Date
Volume
47
Issue
1
Pages
168–174
Identifiers
DOI: 10.1128/JCM.01573-08
PMID: 19005142
Source
Medline
License
Unknown

Abstract

Rapid detection and differentiation of Taenia species are required for the control and prevention of taeniasis and cysticercosis in areas where these diseases are endemic. Because of the lower sensitivity and specificity of the conventional diagnosis based on microscopical examination, molecular tools are more reliable for differential diagnosis of these diseases. In this study, we developed and evaluated a loop-mediated isothermal amplification (LAMP) assay for differential diagnosis of infections with Taenia species with cathepsin L-like cysteine peptidase (clp) and cytochrome c oxidase subunit 1 (cox1) genes. LAMP with primer sets to the cox1 gene could differentiate between three species, and LAMP with primer sets to the clp gene could differentiate Taenia solium from Taenia saginata/Taenia asiatica. Restriction enzyme digestion of the LAMP products from primer set Tsag-clp allowed the differentiation of Taenia saginata from Taenia asiatica. We demonstrated the high specificity of LAMP by testing known parasite DNA samples extracted from proglottids (n = 100) and cysticerci (n = 68). LAMP could detect one copy of the target gene or five eggs of T. asiatica and T. saginata per gram of feces, showing sensitivity similar to that of PCR methods. Furthermore, LAMP could detect parasite DNA in all taeniid egg-positive fecal samples (n = 6). Due to the rapid, simple, specific, and sensitive detection of Taenia species, the LAMP assays are valuable tools which might be easily applicable for the control and prevention of taeniasis and cysticercosis in countries where these diseases are endemic.

Statistics

Seen <100 times