Affordable Access

Access to the full text

Long non-coding RNAs in Epstein–Barr virus-related cancer

  • Liu, Yitong1
  • Hu, Zhizhong1
  • Zhang, Yang1
  • Wang, Chengkun1
  • 1 University of South China, 28 West Changsheng Road, Hengyang, Hunan, 421001, People’s Republic of China , Hengyang (China)
Published Article
Cancer Cell International
Springer (Biomed Central Ltd.)
Publication Date
May 25, 2021
DOI: 10.1186/s12935-021-01986-w
Springer Nature


Epstein Barr-virus (EBV) is related to several cancers. Long non-coding RNAs (lncRNAs) act by regulating target genes and are involved in tumourigenesis. However, the role of lncRNAs in EBV-associated cancers is rarely reported. Understanding the role and mechanism of lncRNAs in EBV-associated cancers may contribute to diagnosis, prognosis and clinical therapy in the future. EBV encodes not only miRNAs, but also BART lncRNAs during latency and the BHLF1 lncRNA during both the latent and lytic phases. These lncRNAs can be targeted regulate inflammation, invasion, and migration and thus tumourigenesis. The products of EBV also directly and indirectly regulate host lncRNAs, including LINC00312, NORAD CYTOR, SHNG8, SHNG5, MINCR, lncRNA-BC200, LINC00672, MALATI1, LINC00982, LINC02067, IGFBP7‐AS1, LOC100505716, LOC100128494, NAG7 and RP4-794H19.1, to facilitate tumourigenesis using different mechanisms. Additionally, lncRNAs have been previously validated to interact with microRNAs (miRNAs), and lncRNAs and miRNAs mutually suppress each other. The EBV-miR-BART6-3p/LOC553103/STMN1 axis inhibits EBV-associated tumour cell proliferation. Additionally, H. pylori–EBV co-infection promotes inflammatory lesions and results in EMT. HPV–EBV co-infection inhibits the transition from latency to lytic replication. KSHV–EBV co-infection aggravates tumourigenesis in huNSG mice. COVID-19–EBV co-infection may activate the immune system to destroy a tumour, although this situation is rare and the mechanism requires further confirmation. Hopefully, this information will shed some light on tumour therapy strategies tumourigenesis. Additionally, this strategy benefits for infected patients by preventing latency to lytic replication. Understanding the role and expression of lnRNAs in these two phases of EBV is critical to control the transition from latency to the lytic replication phase. This review presents differential expressed lncRNAs in EBV-associated cancers and provides resources to aid in developing superior strategies for clinical therapy.

Report this publication


Seen <100 times