Affordable Access

deepdyve-link
Publisher Website

The logic induced by effect algebras

Authors
  • Chajda, Ivan1
  • Halaš, Radomír1
  • Länger, Helmut1, 2
  • 1 Palacký University Olomouc,
  • 2 TU Wien,
Type
Published Article
Journal
Soft Computing
Publisher
Springer-Verlag
Publication Date
Jul 26, 2020
Volume
24
Issue
19
Pages
14275–14286
Identifiers
DOI: 10.1007/s00500-020-05188-w
PMID: 32968356
PMCID: PMC7481171
Source
PubMed Central
Keywords
Disciplines
  • Foundations
License
Unknown

Abstract

Effect algebras form an algebraic formalization of the logic of quantum mechanics. For lattice effect algebras \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {E}}$$\end{document} E , we investigate a natural implication and prove that the implication reduct of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {E}}$$\end{document} E is term equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {E}}$$\end{document} E . Then, we present a simple axiom system in Gentzen style in order to axiomatize the logic induced by lattice effect algebras. For effect algebras which need not be lattice-ordered, we introduce a certain kind of implication which is everywhere defined but whose result need not be a single element. Then, we study effect implication algebras and prove the correspondence between these algebras and effect algebras satisfying the ascending chain condition. We present an axiom system in Gentzen style also for not necessarily lattice-ordered effect algebras and prove that it is an algebraic semantics for the logic induced by finite effect algebras.

Report this publication

Statistics

Seen <100 times