Affordable Access

Access to the full text

A logic for the discovery of deterministic causal regularities

Authors
  • Beirlaen, Mathieu1
  • Leuridan, Bert2, 3
  • Van De Putte, Frederik3
  • 1 Ruhr-Universität Bochum, Research Group for Non-Monotonic Logic and Formal Argumentation, Universitätsstraße 150, Gebäude GA, Raum 3/39, Bochum, 44801, Germany , Bochum (Germany)
  • 2 University of Antwerp, Centre for Philosophical Psychology, Antwerp, Belgium , Antwerp (Belgium)
  • 3 Ghent University, Centre for Logic and Philosophy of Science, Ghent, Belgium , Ghent (Belgium)
Type
Published Article
Journal
Synthese
Publisher
Springer Netherlands
Publication Date
Oct 18, 2016
Volume
195
Issue
1
Pages
367–399
Identifiers
DOI: 10.1007/s11229-016-1222-x
Source
Springer Nature
Keywords
License
Yellow

Abstract

We present a logic, ELIr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {ELI^r}$$\end{document}, for the discovery of deterministic causal regularities starting from empirical data. Our approach is inspired by Mackie’s theory of causes as INUS-conditions, and implements a more recent adjustment to Mackie’s theory according to which the left-hand side of causal regularities is required to be a minimal disjunction of minimal conjunctions. To derive such regularities from a given set of data, we make use of the adaptive logics framework. Our knowledge of deterministic causal regularities is, as Mackie noted, most often gappy or elliptical. The adaptive logics framework is well-suited to explicate both the internal and the external dynamics of the discovery of such gappy regularities. After presenting ELIr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {ELI^r}$$\end{document}, we first discuss these forms of dynamics in more detail. Next, we consider some criticisms of the INUS-account and show how our approach avoids them, and we compare ELIr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {ELI^r}$$\end{document} with the CNA algorithm that was recently proposed by Michael Baumgartner.

Report this publication

Statistics

Seen <100 times