Affordable Access

Localized oscillatory states in magnetoconvection.

Authors
  • 1
  • 1 School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne, United Kingdom. , (United Kingdom)
Type
Published Article
Journal
Physical Review E
1550-2376
Publisher
American Physical Society
Publication Date
Volume
87
Issue
2
Pages
23019–23019
Identifiers
PMID: 23496622
Source
Medline
License
Unknown

Abstract

Localized states are found in many pattern forming systems. The aim of this paper is to investigate the occurrence of oscillatory localized states in two-dimensional Boussinesq magnetoconvection. Initially considering an idealized model, in which the vertical structure of the system has been simplified by a projection onto a small number of Fourier modes, we find that these states are restricted to the low ζ regime (where ζ represents the ratio of the magnetic to thermal diffusivities). These states always exhibit bistability with another nontrivial solution branch; in other words, they show no evidence of subcritical behavior. This is due to the weak flux expulsion that is exhibited by these time-dependent solutions. Using the results of this parameter survey, we locate corresponding states in a fully resolved two-dimensional system, although the mode of oscillation is more complex in this case. This is the first time that a localized oscillatory state, of this kind, has been found in a fully resolved magnetoconvection simulation.

Statistics

Seen <100 times